2014年7月27日星期日

Ecobiotechnological Strategy to Enhance Efficiency of Bioconversion of Wastes into Hydrogen and Methane

----------------------- Page 1-----------------------

Indian J Microbiol (July–Sept 2014) 54(3):262–267

DOI 10.1007/s12088-014-0467-7



  ORIGINAL  ARTICLE



Ecobiotechnological Strategy to Enhance Efficiency

of Bioconversion of Wastes into Hydrogen and Methane



Prasun Kumar •       Dinesh Chander Pant •

Sanjeet Mehariya •      Rishi Sharma •     Arun Kansal •

Vipin C. Kalia



Received: 25 March 2014 / Accepted: 16 April 2014 / Published online: 29 April 2014

 Association of Microbiologists of India 2014



Abstract     Vegetable wastes (VW) and food wastes (FW)                extent of 1.2- and 3.5-fold with FW and VW, respectively.

are  generated   in  large  quantities  by  municipal    markets,      The   effective  H2   yields  were   17   and  85 l/kg   TS   fed,

restaurants  and  hotels.  Waste  slurries  (250 ml)  in  300 ml       whereas effective CH4      yields were  61.7 and 63.3 l/kg TS

BOD  bottles,  containing  3,  5  and  7 %  total  solids  (TS)        fed,  from  VW  and  FW,  respectively.  This  ecobiotechno-

were   hydrolyzed    with   bacterial  mixtures   composed     of:     logical  strategy  can  help  to  improve  the  conversion  effi-

Bacillus,  Acinetobacter,  Exiguobacterium,  Pseudomonas,              ciency of biowastes to biofuels.

Stenotrophomonas and Sphingobacterium species. Each of

these   bacteria   had   high   activities  for  the   hydrolytic      Keywords       Anaerobic digestion   Biowaste  

enzymes:    amylase,    protease  and   lipase.  Hydrolysate    of     Biomethanation   Hydrolysis   Mixed bacterial culture

biowaste slurries were subjected to defined mixture of H2

producers    and   culture  enriched    for  methanogens.     The

impact of hydrolysis of VW and FW was observed as 2.6-                 Introduction

and 2.8-fold enhancement in H2  yield, respectively. Direct

biomethanation of hydrolysates of VW and FW resulted in                Pollution   Control   Boards    and  Health    Departments     are

3.0- and 1.15-fold improvement in CH4 yield, respectively.             constantly worried about the generation of huge quantities

A  positive   effect of  hydrolysis   was   also  observed   with      of  wastes  and   the  rapidly  declining   reservoirs  of  fossil

biomethanation  of  effluent  of  H2  production  stage,  to  the       fuels.  Uncontrolled    fermentation    and   burning   of  these

                                                                       wastes  and  fuels  release  obnoxious  gases  [ 1].  Among  the

                                                                       various proposals being explored to solve these problems,

Prasun Kumar and Dinesh Chander Pant have Contributed equally to       anaerobic digestion (AD) appears to be the most lucrative.

this study.                                                            AD is a metabolically efficient process, but is economically



Electronic supplementary material     The online version of this       very weak. In order to enhance the economic value of the

article (doi:10.1007/s12088-014-0467-7) contains supplementary         process, suggestions have been made to derive value added

material, which is available to authorized users.                      products by diverting the intermediates of the waste solu-



                                                                       bilizing step to hydrogen (H  ), methane (CH  ), bioplastic,

P. Kumar (&)   S. Mehariya   R. Sharma   V. C. Kalia                                                   2                  4

Microbial Biotechnology and Genomics, CSIR -Institute of               enzymes,  etc.  [2,  3].  AD  is  a  multi-step  process,  which

Genomics and Integrative Biology (IGIB), Delhi University              involves different bacteria with a wide range of metabolic

Campus, Mall Road, New Delhi 110007, India                             activities. Although, organic matter of the biowastes can be

e-mail: prasun.mcr@gmail.com                                           digested   up  to 95 %    into  carbon   dioxide  and   CH4   [4],



P. Kumar                                                               however,  the  whole  process  is  limited  by  the  hydrolytic

Department of Biotechnology, University of Pune, Pune 411007,          step. The hydrolysis of organic matters is influenced by its

India                                                                  composition,  the  most  difficult  to  digest  are  the  lignocel-

                                                                       lulosic  biowaste  [5]. Another  issue  which  demands  atten-

D. C. Pant   A. Kansal

TERI University, 10, Industrial Area, Vasant Kunj,                     tion is  the fact  that although  H2  is an intermediate  of the

New Delhi 110070, India                                                AD  process,  however,  in  nature,  it  results  in  CH4  as  the



123


----------------------- Page 2-----------------------

Indian J Microbiol (July–Sept 2014) 54(3):262–267                                                                                  263



final  byproduct    with  little  or  no H2 evolution  [6].  It is    activities  for  the  following  enzymes:  amylase,  lipase  and

because of the fact that thermodynamically, H2 production            protease  by  method  described  previously  [ 19,  20].  Fifty

process  is  not stable  and  the  equilibrium   shifts to  CH4      bacteria with high hydrolytic activities were evaluated for

production.   This  leads  to  a scenario   of interspecies   H2     their performance at pH range 5.0–9.0. A set of 11 bacterial

transfer reactions, where H2  consumers out number the H2            strains were selected and identified through 16S rRNA gene

producers [7]. Another primary reason for low or no evo-             [20]. These bacteria were employed for preparing 11 mixed

lution  of  H2 during  AD  is  the  feedback  inhibition  of  H2     hydrolytic   bacterial   cultures  (BC1–BC11)      (Table   S1),

process by high partial pressure of H  . Studies to investi-         designed   on  the  basis  of  Plackett–Burman     method   [21]

                                          2



gate H2 and CH4 potential of different biowastes have been           (Tables  S2).  Similarly,  for  H2  production  another  set  of

evaluated under different physiological conditions [8– 13].          mixed microbial culture (MMC4), previously screened on

It is difficult  to  produce   H2  from   biowaste,   since  it is    glucose  was  used  [21].  MMC4  was  composed  of  the  fol-

invariably accompanied by inherent microflora, which out              lowing 6 strains: Enterobacter aerogenes EGU16, Proteus

number the H2-producing bacteria [8,  14]. Sterilization of          mirabilis EGU21, Bacillus cereus EGU43, B. thuringiensis

biowaste  to  get  rid  of  contaminating  bacteria  is  a  costly   EGU45, B. pumilus HPC 464, Bacillus sp. HPC459, which

proposal.  Attempts  to  produce  H2    from  un-sterile  wastes     were  previously  established  to  be  effective  as  mixed  H2

have been successful to some extent [6,  15– 17]. The need           producers [21]. Each mixed culture was prepared by com-

is to look for a robust set of organisms, which can survive          bining 6 different microbes in equal proportions amounting

under   harsh  conditions   and  produce    H   and   CH  .  The     to  a  final  cell  protein  concentration   of  10  lg/ml   [19].

                                              2          4



ecobiotechnological  strategy    is  based  on  the  concept  of     Enrichment  of  methanogens  was  done  by  incubating  3 %

using a mixture of bacteria, which have been well defined             total solids (TS) cattle dung slurry at 37 C for 20 days [22].

to carry out the desired metabolic activity. Under a given

set  of physiological  conditions prevailing  in  a fermenting       Total Solids and Organic Solids

biowaste, at least one of these well defined bacteria will be

able  to  survive  and   carry  out  the  process  successfully      Samples of vegetable waste (VW) and kitchen food waste

[14,  18].                                                           (FW)    have  been   analysed   for  parameters   like  TS,  and

   It  has  been  realized  that  in  all  energy  generation  pro-  volatile solids, which were estimated by heating a sample

cesses, the major limiting factor is the feed. Biowastes are         at 110 C for 24 h and at 600 C for 4 h, respectively [22].

an  obvious  choice   because   of  their  availability  in  large

quantities  and  ‘‘consistent’’  supplies  on  daily  basis.  Most   Hydrolysis of Biowastes

biowastes are composed of complex organic materials. The

very  first  step  in  their  utilization  is  the  solubilization  of The  biowaste  slurries  (250 ml)  were  hydrolysed  with  11

macromolecules      into  simpler   and  easily  metabolizable       mixed  microbial cultures namely BC1–BC11. The hydro-

substrates  [15,  19].  Biowastes  originating  from  vegetable      lysis  of  waste   was   carried   out  for  5 days   at  37 C.

markets and food and fruit processing industries, which are          Hydrolysis  was  monitored  through  the  production  of  vol-

rich in fats, carbohydrate and proteins. These macromole-            atile fatty acids [19].

cules  can be metabolized by bacteria possessing enzymes

such as lipases, amylases and proteases [19]. The question           Hydrogen Production

is thus, Can an improvement in the hydrolytic process lead

to enhancement of the digestion process? In this study, we           Biowaste feed (250 ml) at 3, 5 and 7 % TS was inoculated

have   used  an  ecobiotechnological     strategy  to  use  well     with MMC4 at the rate of 10 lg cell protein/ml of slurry.

defined bacterial cultures for hydrolysis of unsterile wastes         pH of the slurry was adjusted to 7.0 prior to incubation and

and subject the hydrolysate to another set of H2-producers           the bottles were made air tight using glass stoppers. pH was

and enriched culture of methanogens, independently and in            adjusted  to  7.0  using  2 N  NaOH  or  2 N  HCl  and  flushed

a sequential manner.                                                 with argon, on a daily basis. The evolved gases were col-

                                                                     lected  by  the  water  displacement  method.  Gas  collection

                                                                     and   analysis  of  the  samples   were   carried  out  until H2

Materials and Methods                                                evolution  ceased  [ 19,  20].  The  values  presented  here  are

                                                                     based on three replicates.

Preparation of Hydrolytic, H2  Producers

and Methanogens                                                      Methane Production



We isolated 1,000 bacteria from soils, river sediments and           Biowaste feed (250 ml) at 3, 5 and 7 % TS was inoculated

cattle  dung.  These  were  screened  for  those  having  high       with   methanogens     10 %    (v/v). pH   of   the  slurry  was



                                                                                                                           123


----------------------- Page 3-----------------------

264                                                                                  Indian J Microbiol (July–Sept 2014) 54(3):262–267



adjusted to 7.0. The reactor bottle was flushed with argon            Hydrogen Evolution

to make the conditions anaeronbic. Biogas production was

monitored daily for 15 days and it was observed that bio-            H2  evolution  was  observed  from  vegetable  waste  slurry

gas production stopped by 10 days except in controls [22].           (VWS) and food waste slurry (FWS) using defined mixed

The values presented here are based on three replicates.             microbial  culture  of  H2-producers  (MMC4)  [21].  Unhy-

                                                                     drolysed   waste    (control)   was   observed    to   generate

                                                                     160–390 ml     of biogas   from  250 ml   of  VWS.    Here,  H2

Analytical method                                                    constituted 39.7–44.4 % of the total biogas, amounting to

                                                                     a  net  observed  volume  of  65–155 ml/250 ml  slurry.  The

Gas Analysis                                                         effective  H2  yield  was  in  the  range  of  6–9 l/kg  TS  fed.

                                                                     Pretreatment   of  VW    with   hydrolytic  bacterial  cultures

The composition of the biogas produced during fermenta-              was  very  effective.  Of  the  11  mixed   bacterial  cultures,

tion  processes  was  determined  using  gas  chromatograph          BC6,  BC7,  BC8  and  BC10  were  found  to  be  effective  in

(Nucon GC5765) equipped with Porapak-Q and molecular                 improving  H2   yield  (Table  1).  At  3 %  TS  VWS,  biogas

sieve columns using thermal conductivity detector [19, 21].          evolution   increased   up  to  285 ml    with   BC7.   It  was

                                                                     accompanied     by  a substantial  enhancement     in  H2  evo-

Volatile Fatty Acid Estimation                                       lution  up  to  130 ml,  i.e.,  a  2-fold  increase  over  control.

                                                                     At  5 %  TS  VWS,  maximum  H2        evolution  was  observed

VFA analysis was carried out from 1.0 ml sample taken in             with  BC7.  Although  H2   component  of  the  biogas  did  not

1.5 ml  vials.  2–3  drops  of  ortho-phosphoric  acid  (25 %        change much, however, BC7 resulted in 2.6-fold increase

v/v) were added to each vial for sample preservation. VFA            in  H2 yield.  Further  increase  in  the  concentration  of  TS

concentrations  were  determined  using  gas  chromatograph          in  the  VWS  to  7 %  led  to  increase  in  the  net  evolution

(GC  6890 N)  equipped  with  flame  ionization  detector.  A         of biogas   (up  to 530 ml),   however,    it was  not  accom-

capillary  column,   DBWAXetr       (30 m  9 53 lm     9   1 lm      panied  by   a proportional   increase   in H2   evolution.  H2

ID) was used for analysis. The oven, injector and detector           evolution  was  almost  similar  to  that  recorded  with  con-

temperatures were 140, 220 and 230 C, respectively.                  trol. In  fact, it has   been  reported   previously   that  H2

                                                                     evolution process is negatively influenced by the increase

                                                                     in  carbohydrate  concentration  in  the  slurry  [23].  It  may

Results                                                              also  be  remarked  that  high  TS  also  influence  the  meta-

                                                                     bolic  process  of  H2 evolution  since  the  H2 component  of

In natural conditions, the biowaste containing biomacromol-          the  biogas  was  also  reduced  compared  to  those  observed

ecules like carbohydrates, fats and proteins can be degraded         at  3  and  5 %  TS  slurries.  It  may  be  reasonable  to  con-

by bacteria producing hydrolytic enzymes. Screening of 1,000         clude   that BC7    is  effective  in  hydrolyzing    the  VW

bacteria  allowed  us  to  select  50  having  high  activities  for resulting  in  2.0- to  2.6-fold  enhancement     in  H2  yield

amylase,   lipase  and  protease.  Further   evaluation  of  the     (Table  1).

enzymatic activities at a wider pH range enabled us to select           In  contrast  to  VW,  the  fermentation  process  was  more

11 having at least one of these enzymatic activities in the pH       effective with FW, which may be due to easily digestible

range 5.0–9.0. Finally eleven bacteria so selected were iden-        components  of  the  waste.  Here,  250 ml  of  FWS  without

tified as: Bacillus aryabhattai  MBG46 (KJ563237); Acine-             any  hydrolysis   resulted  in the  net  evolution  of  685 ml

tobacter   sp.  MBG50     (KJ563241)     and  A.  haemolyticus       biogas  at  3 %  TS.  It  contained  225 ml  H2,  equivalent  to

MBG52       (KJ563243);     Exiguobacterium       sp.   MBG53        32.8 %   of  the  total biogas  (Table  1). The   effective  H2

(KJ563244)  and E.  indicum  MBG54  (KJ563245);  Pseudo-             yield  was  30 l/kg  TS  fed.  Hydrolysis  with  different  bac-

monas    mendocina    strains MBG51      (KJ563242),    MBG57        terial cultures resulted in gain in H2  yields, ranging up to

(KJ563248), MBG58 (KJ563249) and P. pseudoalcaligenes                85 l/kg TS fed with BC6. It was accompanied by a higher

MBG45 (KJ563236); Stenotrophomonas koreensis MBG44                   H2  component  of  62.1 %.  Hydrolysis  of  FW  resulted  in

(KJ563235)    and   Sphingobacterium     daejeonense   MBG47         2.8-fold enhancement in H2  yields. Further increase in TS

(KJ563238) (Table S1). Of the 11 mixed bacterial cultures:           of  the  slurry  did  not  prove  helpful  in  improving  the  H2

BC6, BC7, BC8 and BC10 were found to be effective for                production   process.   H2   yields  of   28–38 l/kg   TS   fed

hydrolyzing VW as indicated by the total volatile fatty acid         from  5 %   TS   pretreated  with  BC1,   BC6   and   BC8   and

composition, over a period of 5 days of incubation (Tables           24–36 l/kg TS fed from 7 % TS slurries were higher than

S3). On the other hand, mixed bacterial culture designated as        their respective  controls.  BC6    and  BC8   were   the  most

BC1,  BC6,  BC8  and  BC9  were  found  to  be  effective  for       effective  mixtures of hydrolytic bacteria, which enhanced

hydrolyzing FW under similar incubation period.                      H2  yield.  (Table 2).



123


----------------------- Page 4-----------------------

Indian J Microbiol (July–Sept 2014) 54(3):262–267                                                                                              265



Table 1   Hydrogen producing abilities of mixed H  -producersa  from prehydrolyzed biowastes

                                                    2



Mixed bacterial    Biogas          H2                          Biogas         H2                          Biogas         H2

culture            volume (ml)                             b   volume (ml)                                volume (ml)

                                  Vol (ml)    %      Yield                    Vol (ml)    %      Yield                   Vol (ml)    %      Yield



                   Vegetable Waste

                   3 % TSc                                     5 % TS                                     7 % TS



Controld             160            65         40.6    9       180             80         44.4     6      390             155        39.7    9



BC6                  180            70        38.9   10        270            85          31.5     7      465            125         26.9   7



BC7                  285           130        45.6   17        475            210         44.2   17       530            150         28.3   9



BC8                  260           115        44.2   16        380            165         43.4   13       350            75          21.4   4



BC10                 250            90        36.0   12        250            100         40.0     8      240            105         43.7   6



                   Food Waste



                   3 % TS                                      5 % TS                                     7 % TS



Control              685           225        32.8    30       635            205         32.3   16       620            295         47.6   17

BC1                  535           230        43.0    30       735            345         46.9   28       650            265         40.8   15



BC6                1,030           640        62.1    85       800            395         49.4   32       885            420         47.4   24



BC8                  485           250        51.5    33       875            470         53.7   38       945            625         66.1   36



BC9                  635           290        45.7    39       525            225         42.8   18       515            190         36.9   11



a Defined mixed microbial culture of H  -producers (MMC4)

                                         2

b H2  production in l/kg Total solids fed



c Total solids



d No mixed bacterial culture added



Table 2   Comparison  of  methane  yields  from  prehydrolyzed  biow-      routes-Direct  and  Indirect  (preceeded  by  H2        production).

astes by direct and indirect biomethanation                                 The  impact  of  hydrolysis  by  mixed  bacterial  cultures  on

Mixed           Direct biomethanationa       Indirect biomethanation       biomethanation       through    both   the  routes   was    distinctly

bacterial                                                                   observed.

                3 %       5 %       7 %      3 %      5 %       7 %

culture

                TSb       TS        TS       TS       TS        TS

                                                                           Direct Biomethanation

Vegetable waste

  Controlc      20.0      26.5      36.4      8.0     13.4       8.6        Biomethanation  of  VWS  (250 ml)  was  observed  to  vary



  BC6           17.5      29.3      25.0      7.3     15.2      11.4        from 20 to 36.4 l/kg TS fed. It constituted around 61 % of

  BC7           61.7      31.0      15.7     28.3     16.6      10.0        the  total biogas    produced    over   a  period   of  15 days.   In

  BC8           26.7      42.2      31.4     12.7     13.5      10.7        contrast, hydrolysis of VW by 11 different mixed bacterial

  BC10          17.5      36.4      38.6      6.0     14.7      11.4        culture   (BC1–BC11)        having     high   hydrolytic     enzyme

Food waste                                                                  activities proved effective in improving the biomethanation

  Control       55.0      26.0      20.3     26.3     16.7      10.7       process.  The  four  BCs:  BC6,  BC7,  BC8  and  BC10  were

  BC1           50.0      37.4      32.1     30.0     19.4      12.1        chosen   for  further   studies  as  the  VFA     content   of  these

  BC6           63.3      54.5      24.3     31.7     17.5      13.6       hydrolysates were quite high and consistent. BC7 proved to

  BC8           46.7      45.2      42.1     21.4     19.2      12.8       be the most efficient with a final CH4 yield of 61.7 l/kg TS

  BC9           48.3      52.3      37.9     31.5     18.5      12.1        fed  at  3 %  TS  VWS.  The  net  enhancement  in  CH4          yield

a                                                                           was 3-fold. Although CH4  yields were higher at 5 and 7 %

  CH4  production in l/kg Total solids fed

b                                                                           TS  VWS  compared  to  control,  however,  BC7  treatment

   Total solids

c                                                                          resulted   in  lower    CH4    yields  at  5  and   7 %    TS   VWS,

   No mixed bacterial culture added

                                                                            compared to 3 % TS VWS. Hence, we may conclude that

Methane Evolution                                                          hydrolysis of VWS with BC7 is effective at 3 % TS VWS

                                                                            in comparison to untreated VWS.

Biomethanation       has  been    a  suitable   post  H2   treatment           Direct   biomethanation      of   untreated    FWS    was    more

process  for  effective  utilization  of  biowastes.  CH4      evolu-       effective in comparison to VWS. Here, the net CH4  yield

tion  was  observed  on  hydrolysed  biowastes  through  two                was 55 l/kg TS fed. Biomethanation was found to decline



                                                                                                                                      123


----------------------- Page 5-----------------------

266                                                                                  Indian J Microbiol (July–Sept 2014) 54(3):262–267



from FWS (control) at higher TS concentrations of 5 and              which are favorable to the bacteria in question and at the

7 %, where the CH4 yield were found to be 26.0 and 20.3 l/           same   time  prevent   others  from   growing.   Invariably,  it

kg   TS  fed,  respectively.  Hydrolysis    of  FW   with   well     demands sterile feed material. In the case of fermentation

defined  mixed  bacterial  cultures  was  quite  effective  with      of biowastes, it is difficult to sterilize the feed [19]. Hence,

BC6,   which   enabled   us  to improve    the  biomethanation       the presence of inherent bacteria continues to pose a threat,

process  to  yield  63.3 l  CH4/kg  TS  fed  at  3 %  TS  FWS.       as they metabolize the organic matter into undesirable by-

Although, the CH4 yields were higher than the control even           products. Ecobiotechnological approach relies on the use of

at  5 %  and   7 %   TS  FWS,    however,   these  values  were      robust bacteria with well defined activities. Mixed defined

relatively  lower  than  those  obtained  from  3 %  TS  FWS         bacteria as inoculum enhances the chance of survival of at

with BC6.                                                            least one or two types of bacteria, which  are sufficient to

                                                                     ensure consistency and reproducibility of the process. This

Indirect Biomethanation                                              approach   has   been  exploited   previously   for  producing

                                                                     polyhydroxyalkanoates  [ 14,  18].  In  the  present  work,  the

The  effect  of  pretreatment  with  hydrolytic  bacteria   was      whole process is quite complex. For complete degradation

evident  even  with effluent emanating  from H2  production           of  biowastes,   coordinated   activities of  different  set  of

process. Untreated VWS, resulted in 8.0–13.4 l CH4/kg TS             bacteria are operative: (1) Hydrolytic bacteria (2) H2  pro-

fed  at  3–7 %  TS  concentrations.  In  contrast,  VWS  sub-        ducers and 3) methanogens [ 1]. The major metabolic lim-

jected  to  hydrolysis  by   BC7   proved   effective  even   in     itations are: (1) The hydrolytic process, and (2) H2 transfer

indirect biomethanation process, with a net gain of 1.16- to         reaction [7]. For hydrolysis of organic matter, the need is to

3.53-fold. The best results were observed at 3 % TS VWS.             have well defined bacteria with high hydrolytic activities.

Incidentally, the same combination was the most efficient             And such bacteria are present in small numbers in natural

even  via  direct  biomethanation.  On  the  other  hand,  FWS       populations. The other issue is the fact that H2 produced by

slurry  was  also  digested  most  efficiently  by  BC6  in  the      one set of bacteria  is immediately quenched by methano-

cases  of  direct  and  indirect  biomethanation.  Via  indirect     gens, such that there is little or no net evolution of H2  [15].

biomethanation,    a  1.2-fold  enhanmcement     in  CH4   yield     In  the  present  study,  bacteria  with  high  relative  enzyme

was recorded in comparison to its respective control.                efficiencies  were  mixed  in  equal  proportions.  Of  the  11

   Most of the biological wastes undergo AD process with             such  mixed  bacterial  cultures,  BC7  and  BC6  found  to  be

no  net  evolution  of  H2.  It  is  primarily  because  of  inter   effective in enhancing H2  yield from vegetable waste and

species   H2  transfer  phenomenon.      Since  H2   generation      food waste to the extent of 1.9- and 2.8-fold, respectively,

results in accounting for 35 % of the total energy present in        in  comparison  to  control.  Hydrolysate  generated  by  BC6

the organic matter content of the feed, it becomes  imper-           and BC7 were effective in 1.15- and 3.1-fold improvement

ative to subject the effluent from H2  stage to methanogens.          in CH4  yield. In the case of hydrolysate initially subjected

Here, we can expect a maximum of 65 % of the energy as               to  H2 producers  and  subsequently  by  methanogens,  BC7

CH4,  with  respect  to  CH4   yield  observed  via  direct  bio-    resulted in 3.53-fold and BC6 led to 1.2-fold enhancement

methanation as 100 %. In VWS (3 % TS) and BC7 com-                   in  CH4  yields.  Thus  under  all  conditions,  hydrolytic  bac-

bination,  we   observed   63.3 l CH4/kg    TS   fed via  direct     terial mixture proved effective in enhancing the processes

biomethanation.     Via   indirect  biomethanation,    we   can      for  generating  bioenergy.  Secondly,  the  split  of  H2 stage

expect a CH    yield of 41.1 l. Since we could observe VWS           and CH    stage allowed us to overcome the problem of H -

              4                                                              4                                                     2



(3 % TS) and BC7 combination to generate 31.7 l CH4, it              energy transfer [8, 23]. These findings provide an evidence

is equivalent to 77 % of the expected value. On the other            that hydrolysate of organic matter can be easily converted

hand, with FWS (3 % TS) and BC6 combination, we could                into bioproducts of high economic values. Combining these

generate  61.7 l  CH4/kg  TS  fed  via  direct  biomethanation       metabolic   pathways    may   enable  complete    and  efficient

and   28.3 l CH4/kg    TS  fed  via  indirect  biomethanation.       degradation along with sustainability.

Thus we could recover 70 % of the CH4 yield expected via

direct biomethanation. In both the cases, we could recover

70–75 % of the expected CH4  yields.                                 Conclusion



                                                                     Hydrolysis   of  biowastes   with  defined    bacterial cultures

Discussion                                                           helps to improve H2  and CH4  production from VW at 3 %

                                                                     by 1.9- and 3.1-fold, whereas with FW the corresponding

Bioprocesses involving single bacterial cultures are always          enhancements were 2.83- and 1.15-fold, respectively. FW

at the risk of getting contaminated [14]. In order to run the        is a better feed for H2  (5-fold) compared to VW. 3 % TS is

process continuously there is a need to maintain conditions          the best concentration observed for H2  and CH4  generation



123


----------------------- Page 6-----------------------

Indian J Microbiol (July–Sept 2014) 54(3):262–267                                                                                                              267



with  both  VW  and  FW.  The  effective  H2              yields  were  17          10.  Molino  A,  Nanna  F,  Ding  Y,  Bikson  B,  Braccio  G  (2013)  Bi-

and  85 l/kg  TS  fed,  where  as  effective  CH4             yields  were              omethane  production  by  anaerobic  digestion  of  organic  waste.

                                                                                        Fuel 103:1003–1009. doi: 10.1016/j.fuel.2012.07.070

61.7  and  63.3 l/kg  TS  fed  from  VWS  and  FWS,  respec-                        11.  Patterson  T,  Esteves  S,  Dinsdale  R,  Guwy  A,  Maddy  J  (2013)

tively. Hydrolysis thus proved beneficial in achieving cost-                             Life cycle assessment of biohydrogen and biomethane production

effective conversion of waste to energy.                                                 and utilisation as a vehicle fuel. Bioresour Technol 131:235–245.

                                                                                        doi:10.1016/j.biortech.2012.12.109

Acknowledgments          The authors wish to thank the Director of CSIR-            12.  Premier  GC,  Kim  JR,  Massanet-Nicolau  J,  Kyazze  G,  Esteves

                                                                                                                           ´

Institute of Genomics and Integrative Biology (IGIB), Delhi, CSIR-                       SRR, Penumathsa  BKV,  Rodrıguez  J, Maddya  J, Dinsdale  RM,

WUM  (ESC0108)  and  Department  of  Biotechnology  (DBT-BT/PR-                         Guwya  AJ  (2013)  Integration  of  biohydrogen,  biomethane  and

11517/BCE/08/709/2008) Government of India for providing neces-                         bioelectrochemical systems. Renew Energy 49:188–192. doi: 10.

sary funds and facilities. PK is thankful to CSIR for granting Senior                    1016/j.renene.2012.01.035

Research Fellowship.                                                                13.  Xiao L, Deng Z, Fung KY, Ng KM (2013) Biohydrogen gener-

                                                                                         ation  from  anaerobic  digestion  of  food  waste.  Int  J  Hydrogen

                                                                                        Energy 38:13907–13913. doi: 10.1016/j.ijhydene.2013.08.072

                                                                                    14.  Kumar  P,  Singh  M,  Mehariya  S,  Patel  SKS,  Lee  JK,  Kalia  VC

                                                                                         (2014) Ecobiotechnological approach for exploiting the abilities

References                                                                              of Bacillus to produce co-polymer of polyhydroxyalkanoate. Ind

                                                                                        J Microbiol 54:151–157. doi:  10.1007/s12088-014-0457-9

  1.  Kalia  VC  (2007)  Microbial  treatment  of  domestic  and  industri-         15.  Sonakya  V,  Raizada  N,  Kalia  VC  (2001)  Microbial  and  enzy-

     alwastes   for  bioenergy   production.    Appl   Microbiol   (e-Book).            matic   improvement     of  anaerobic    digestion  of  waste   biomass.

     National    Science    Digital   Library    NISCAIR,      New     Delhi,           Biotechnol Lett 23:1463–1466. doi: 10.1023/A:1011664912970

     India. http://nsdl.niscair.res.in/bitstream/123456789/650/1/Domestic           16.  Patel  SKS,   Kumar    P,  Kalia  VC    (2012)  Enhancing     biological

     Waste.pdf                                                                          hydrogen production through complementary microbial metabo-

 2.  Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in                    lisms.  Int  J  Hydrogen  Energy     37:10590–10603.      doi: 10.1016/j.

     aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419. doi:10.                   ijhydene.2012.04.045

     1007/s10295-007-0300-y                                                         17.  Patel  SKS,   Kalia   VC   (2013)   Integrative   biological  hydrogen

 3.  Kumar  P,  Patel  SKS,  Lee  JK,  Kalia  VC  (2013)  Extending  the                production:    an  overview.   Indian   J Microbiol    53:3–10.   doi: 10.

     limits  of  Bacillus  for  novel  biotechnological  applications.  Bio-             1007/s12088-012-0287-6

     technol   Adv   31:1543–1561.      doi: 10.1016/j.biotechadv.2013.08.          18.  Johnson K, Jiang Y, Kleerebezem R, Muyzer G, van Loosdrecht

     007                                                                                MCM (2009) Enrichment of a mixed bacterial culture with a high

 4.  Bouallagui H, Touhami Y, Cheikh RB, Hamdi M (2005) Biore-                          polyhydroxyalkanoate        storage    capacity.   Biomacromolecules

     actor  performance  in  anaerobic  digestion  of  fruit  and  vegetable             10:670–676. doi:10.1021/bm8013796

     wastes.   Process   Biochem     40:989–995.     doi: 10.1016/j.procbio.        19.  Patel  SKS,  Singh  M,  Kumar  P,  Purohit  HJ,  Kalia  VC  (2012)

     2004.03.007                                                                        Exploitation    of  defined    bacterial   cultures  for  production    of

 5.  Kalia VC, Sonakya V, Raizada N (2000) Anaerobic digestion of                       hydrogen     and  polyhydroxybutyrate      from    pea-shells.  Biomass

     banana stem waste. Bioresour Technol 73:191–193. doi: 10.1016/                     Bioenergy 36:218–225. doi: 10.1016/j.biombioe.2011.10.027

     S0960-8524(99)00172-8                                                          20.  Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit

 6.  Kalia VC, Jain SR, Kumar A, Joshi AP (1994) Fermentation of                        HJ,   Sharma    R,  Patel  SKS,    Kalia  VC    (2008)   Hydrogen     and

     biowaste   to  H2  by  Bacillus   licheniformis .  World    J Microbiol            polyhydroxybutyrate       producing     abilities  of   microbes    from

     Biotechnol 10:224–227. doi: 10.1007/BF00360893                                     diverse habitats by dark fermentative process. Bioresour Technol

 7.  Archer DB, Thompson LA (1987) Energy production through the                        99:5444–5451. doi:10.1016/j.biortech.2007.11.011

     treatment   of   wastes   by   micro-organisms.     J  Appl    Bacteriol       21.  Patel  SKS,   Purohit   HJ,  Kalia   VC   (2010)   Dark    fermentative

     63:59s–70s. doi:10.1111/j.1365-2672.1987.tb03612.x                                 hydrogen     production    by   defined     mixed    microbial    cultures

  8.  Chu  CF,   Xu   KQ,   Li  YY,   Inamori    Y  (2012)   Hydrogen     and           immobilized on ligno-cellulosic waste materials. Int J Hydrogen

     methane potential based on the nature of food waste materials in a                 Energy 35:10674–10681. doi: 10.1016/j.ijhydene.2010.03.025

     two-stage   thermophilic    fermentation    process.   Int J  Hydrogen         22.  Kalia VC, Kumar A, Jain SR, Joshi AP (1992) Biomethanation of

     Energy 37:10611–10618. doi: 10.1016/j.ijhydene.2012.04.048                         plant   materials.  Bioresour    Technol    41:209–212.     doi: 10.1016/

 9.  Chuang  YS, Lay CH, Sen B, Chen CC, Gopalakrishnan  K, Wu                          0960-8524(92)90003-G

     JH,  Lin  CS,  Lin  CY  (2011)  Biohydrogen  and  biomethane  from             23.  Kalia VC, Joshi AP (1995) Conversion of waste biomass (pea-shells)

     water  hyacinth  (Eichhornia  crassipes)  fermentation:  effects  of               into hydrogen and methane through anaerobic digestion. Bioresour

     substrate   concentration     and   incubation    temperature.     Int  J          Technol 53:165–168. doi: 10.1016/0960-8524(95)00077-R



     Hydrogen Energy 36:14195–14203. doi: 10.1016/j.ijhydene.2011.

     04.188



                                                                                                                                                    123